Aktuální číslo:

2024/5

Téma měsíce:

Čas

Obálka čísla

Pyrenoid a zvýšení fotosyntetické fixace uhlíku

Jak zlepšit výnosy zemědělských plodin
 |  3. 11. 2016
 |  Vesmír 95, 621, 2016/11

Rostliny při fotosyntéze zabudovávají uhlík z oxidu uhličitého (CO2) do organických látek. Používají k tomu enzym rubisco (ribulóza bisfosfát karboxyláza/oxygenáza, Vesmír 88, 221, 2009/4; 83, 130, 2004/3). V zemské atmosféře je koncentrace oxidu uhličitého, nehledě na její současný vzestup, řádově tisíckrát nižší než koncentrace kyslíku. Oxygenázová aktivita rubisco (vázání kyslíku na organický akceptor) proto velmi výrazně konkuruje jeho karboxylázové aktivitě (vázání CO2 na tentýž akceptor). Situace trvá už stovky milionů let a rostliny opakovaně vyzkoušely několik způsobů, jak ji řešit zvýšením koncentrace CO2 v blízkosti molekul rubisco. Jednou z možností je fotosyntéza C4 (Vesmír 92, 264, 2013/5). Vodní rostliny se navíc musejí vyrovnat s tím, že ve vodě difunduje oxid uhličitý asi desettisíckrát pomaleji než ve vzduchu. Většina mořských i sladkovodních řas (a také jedna skupina mechorostů, hlevíky) si pro zvýšení fixace anorganického uhlíku vytvořila uvnitř chloroplastu tělísko zvané pyrenoid. Tyto organismy dovedou aktivně transportovat oxid uhličitý do buňky a do chloroplastu. Ve stromatu chloroplastů se oxid uhličitý vyskytuje jako hydrogenuhličitanový aniont (HCO3). Trubicovité útvary, tvořené thylakoidními membránami chloroplastu, transportují tyto anionty do nitra pyrenoidu. Zde jsou enzymaticky převáděny na CO2, který se dostává do kontaktu s hustě a pravidelně uspořádanými molekulami rubisco. Pyrenoid bývá obalen zrny asimilačního škrobu (odtud jeho starý český název „škrobotvůrce“).

Celé popsané uspořádání snižuje ztráty oxidu uhličitého zpětnou difuzí z pyrenoidu. Vysoká koncentrace CO2 uvnitř pyrenoidu podporuje karboxylační aktivitu rubisco. Asi třetina globální fixace uhlíku probíhá v pyrenoidech řas. Nyní byl u jednobuněčné zelené řasy rodu Chlamydomonas nově popsán protein pojmenovaný Essential Pyrenoid Component 1 (EPYC1), který se váže s molekulami rubisco. Zatím není jasné, jestli molekuly EPYC1 a rubisco při „výstavbě“ pyrenoidu vytvářejí prostorovou síť ve vzájemné interakci, nebo jestli protein EPYC1 „staví lešení“, na které se rubisco připojuje. Vysvětlení vzniku uspořádání molekul rubisco v pyrenoidu může pomoci relativně snadno vytvořit pyrenoid v chloroplastech zemědělských plodin s běžnou fotosyntézou C3. K tomu by bylo možno využít komponenty pyrenoidu řas. Výnos takto upravených plodin by se mohl zvýšit až o 60 % a zvýšila by se i účinnost využití dusíku a vody. Druhá z citovaných prací se zabývá mimo jiné prvními výsledky naznačeného úsilí. Popisuje molekulárně biologické „spárování“ řasy rodu Chlamydomonas a huseníčku (Arabidopsis), klasického modelového objektu molekulární biologie vyšších rostlin.

 

Literatura

Mackinder L. C. M. et al., PNAS 113, 5958–5963, 2016; DOI: 10.1073/pnas.1522866113

Meyer M. T. et al., Current Opinion in Plant Biology 31, 181–188, 2016; DOI: 10.1016/j.pbi.2016.04.009

Ke stažení

OBORY A KLÍČOVÁ SLOVA: Fyziologie
RUBRIKA: Glosy

O autorovi

Jaromír Kutík

Doc. RNDr. Jaromír Kutík, CSc., (*1948) vystudoval fyziologii rostlin na Přírodovědecké fakultě UK v Praze. Jako emeritus se na této fakultě věnuje zejména rostlinné cytologii.
Kutík Jaromír

Doporučujeme

Divocí kopytníci pečují o krajinu

Divocí kopytníci pečují o krajinu

Josef Matyáš  |  6. 5. 2024
Zubr, pratur a divoký kůň dokážou výborně udržovat rozsáhlé plochy krajiny. Vyplývá to z aktualizovaného dokumentu Metodika přirozené pastvy...
Relativistický čas – čas našeho světa

Relativistický čas – čas našeho světa

Pavel Krtouš  |  6. 5. 2024
„Někteří filozofové … se domnívají, že fyzika není schopna popsat nejzákladnější aspekty reality, a zavrhují ji proto jako zavádějící formu...
Čas na poslední kafe

Čas na poslední kafe uzamčeno

Tomáš Knedlík  |  6. 5. 2024
Kávu zbožňujeme pro její vůni a chuť, ale také pro její povzbuzující účinky. Omamná vůně kávy se uvolňuje při pražení, kdy vznikají těkavé...